¤@¡B«e¨¥
´N¤½¸ôÀG¹D©ÎÅK¸ôÀG¹D¦Ó¨¥¡ANMT¬O¥Ñ³\¦h¦U¦¡¦U¼ËªºÀG¹D¸gÅç©Ò²Ö¿n¡A³o¨Ç§C¦¨¥»°ª§Þ³Nªº®¿«ÂÀG¹D¨ä¶}«õ±¿n±q45¥¤è¤½¤Ø¨ì110¥¤è¤½¤Ø¡C¤U¦C¬ONMTªº°ò¥»n¯À¡G
1.³]p
(1)ªì´Á³]p¬O®Ú¾Ú²{³õªº¦a½è¹Ï¡BÆp±´©¥¤ß¤Î¾_´úµ²ªG¡C
(2)©¥Åé«~½è´yz±Ä¥ÎQÈ(Barton 1974¡FBarton ©MGrimstad 1994)¡C
(3)®Ú¾Ú¬I¤u¹Lµ{©ÒÀò±oÀG¹D©¥¥Û«~½è¤ÎQ¨t²Î¤ä¼µ«ØÄ³¨Ó¿ï¾Ü³Ì«á¤ä¼µ¡C
(4)¤j³¡¥÷±`¥Îªº¥Ã¤[¤ä¼µÃþ§O§Q¥Î¤G¦V«×Â÷´²¤¸¯À(¥i¤ÀªR¸`²z)UDEC-BBµ{¦¡¤Î¤T¦V«×3DEC(¥i¤ÀªR3D¸`²z)µ{¦¡¨Ó½T»{¡CNGI©Òµo®iªºUDEC-S(fr)¥iÀˮּQ¾®¤g©Ò©Ó¨üªº¤O¡C
(5)°ò¥»¤W±Ä¥ÎNMT©Ò³]pªº¤½¸ôÀG¹D¬O¤¹³\±Æ¤ôªº¡A¦pªG¬°¤F±±¨îÀG¹D¤ºªº¤ô¤ÎÁ÷á¡A¥i±Ä¥Î²V¾®¤g¹jª©±N¤ô¹jÂ÷¡C
2.¦X¬ù
(1)·~¥D¤ä¥I§Þ³N¤W¥¿½Tªº¤ä¼µ¶µ¥Ø¡C
(2)©Ó¥]°Ó®Ú¾Ú¦X¬ù¤¤©Ò¦Cªº³æ»ù¨Ì¹ê§@¼Æ¶qp»ù¡C
(3)·~¥D¤ñ©Ó¥]°Ó©Ó¾á¸û¦hªº·ÀI¡C
(4)©Ò±Ä¥Îªº¤ä¼µ¬O¥Ñ·~¥D»P©Ó¥]°Ó©Ò¦P·NªºQÈ¡A¦Ó¥B¸g±`§ïÅÜ¡C
3.¶}«õ¤Î¤ä¼µ
(1)¤@¯ë±Ä¥ÎÆp¬µªk¶}«õÀG¹D¡A¨Ì¦a½è²{ªp¿ï¾Ü¾A·íªº¶}«õ¤èªk¡C
(2)Á{®É¤ä¼µ¦pSb¡AB©ÎS(fr)¬O¥Ã¤[¤ä¼µªº¤@³¡¥÷¡C
(3)¥Ã¤[¤ä¼µÃþ§O¬O¦bÀG¹D¶}«õ¹Lµ{¤¤¤~¿ï©w¡C
(4)¥Ã¤[¤ä¼µ¤@¯ë¬O¥Ñ°ª«~½èªºÀ㦡¿ûÅÖ¼Q¾®¤g¤Î¥þµÛ«¬©¥®ê©Òºc¦¨¡A©¥®ê¨ã¦³¨¾»G»k¯à¤O¡C
(5)©¥½L¦a½è±ø¥ó«Ü®t®É¡A¤~¨Ï¥ÎŨ¬ä²V¾®¤g¡C
NMT¤£¦P©óNATM¡G(1)NMT§Q¥Î¹w¨¥©Êªº©¥Åé¤ÀÃþ©ó¤ä¼µ³]p¡A(2)NATM§Q¥Îp´ú©ó¤ä¼µ³]p¿ï¾Ü¡A(3)NMT±Ä¥Îªº¥Ã¤[¤ä¼µ¤£¬OŨ¬ä²V¾®¤g(°£«D»Ýn)¡A(4)NATM±Ä¥ÎÁ{®É¤ä¼µ¡AŨ¬ä²V¾®¤g¬°¥Ã¤[¤ä¼µ¡A(5)NMT±Ä¥Î¾÷±ñÁu¬I¼Q¿ûÅÖ¼Q¾®¤g(10-25m3/hr)¡A(6)NATM±Ä¥Î¿û½uºô¡A¤@¯ë±Ä¥Î¤â«ù°®¦¡¼Q¾®¤g¡C
¥Ñ©óÀ㦡¼Q¾®¤g¤Ï¼u¶q§C(¤@¯ë¬O4% - 6%)¡A¤Î¤£±Ä¥Î¤ºÅ¨¬ä²V¾®¤g¨Ó¨¾¤ô¡A¥Î©óNMT»PNATMÀG¹Dªº²V¾®¤g¶q¦³«Ü¤jªº¤£¦P(NMT²V¾®¤g¥Î¶q¬ù¥u¦³NATMªº1/2 ¡V 1/5)¡A¬I¤u¤u´Á¤]©úÅã¨ü¨ì¼vÅT¡C¥Ñ©óNMT±Ä¥Î¾÷±ñ¤Æ¬I¤u(¾÷±ñÁu¡B¹q¸£±±¨îÆp³ù)¡AÀG¹D¶}«õ±ªº¤u¤H¨C¯Z¥u¦³¤T¤H¡C
NMT¥Nªí©Ê¯SÂI¡A¹Ï(¤@)¡G
(1)®Ú¾ÚÅSÀY¡B©¥¤ß¡BÀG¹D¾À±ªº©¥Åé¯S¼x´yz§@¬°¼µÃþ§O¦ôºâ¡C
(2)·í¦³¾_´ú¸ê®Æ¥i¥Î®É¡A¥i§Q¾_´ú¸ê®Æ¨Ó«Ø¥ß©¥Åé«~½è¡C
(3)²{¦a±Ä¥ÎQ¨t²Î¨Ó¿ï¾Ü¤ä¼µÃþ§O¡C
(4)§Q¥Î¼ÆÈ¤ÀªR¼Ò¦¡¨Ó½T»{¨Ì¸gÅç³]pªº¤ä¼µ¨t²Î¡C
(5)À㦡¼Q¾®¤g±Ä¥Î¾÷±ñÁu¬I¼Q¡C
|

¹Ï¤@ NMT³]p»P¬I¤u |
¤T¡B©¥Åé¯S©Ê´yz
¦b1970¦~§Q¥ÎQ¨t²Î¨Ó´yz©¥Åé¯S©Ê¡A·í®É¿ûÅÖ¼Q¾®¤g©|¥¼°Ý¥@(³Ì¦§Q¥Î¿ûÅÖ¼Q¾®¤g¬O1972¦~¡AÀ³¥Î©óRirieÅQªºÀG¹D)¡C¤G¤Q¦~¨ÓQ¨t²Î§ó·s¤F¨â¦¸¡A¬O¬°¤F°t¦X³Ìªñ¤»¦~À㦡¿ûÅÖ¼Q¾®¤g§Þ³N¤Î®¿«Â©Ò«Ø¥ßªº¸gÅç¡C²{¤µªºQ¨t²Î(Barton©MGrimstad,1994)©M¤G¤Q¦~«eªº¨t²Î¤jP¤W¨S¦³§ïÅÜ¡A¥u¦³¦b¦aÀ³¤Oªº¶µ¥Ø§@¤F§ï¶i¡A©¥Åé«~½è¼Æ(QÈ)½d³ò§ï¬°0.001¦Ü1000¡A¦p¦¹¸û¯à½T¹ê¦a¤ÏÀ³ÀG¹D¦a½èª¬ªpªº¥¨¤jÅܤơA¬J±q¿±µÈ©ÎÀ½À£©¥½L©MÂH¤g¨ì«p¶ôª¬¡BµL¸`²z©¥½L¡CQȪºpºâ¤½¦¡¥Ñ¤»Ó°Ñ¼Æ²Õ¦¨¡G
Q = (RQD/Jn)(Jr/Ja)(Jw/SRF)
¤»Ó°Ñ¼Æ¬O¸gÅçµû¤À¡A¨äµû¤À¦pªí¤@©Ò¥Ü¡A¨Ã§Q¥Î²Îp¤èªk±N¤»Ó°Ñ¼ÆºKn¦b¦p¹Ï(¤G)¡C
ªí¤@ Q¨t²Îµû¤Àªí(Barton and Grimstad, 1994)
1.Rock Quality Designation |
RQD |
A |
Very poor |
0¡D25 |
B |
Poor |
25¡D50 |
C |
Fair |
50¡D75 |
D |
Good |
75¡D90 |
E |
Excellent |
90¡D100 |
Note: |
i ) Where RQD is reported or measured as¡Ø10(including 0),a nominal value of 10 is used to evaluate 0.
ii) RQD intervals of 5,i.e., 100,95,90,etc.,are sufficiently accurate. |
¡@ |
¡@ |
2.Joint Set Number |
Jn |
A |
Massive, no or few joints |
0.5¡D1.0 |
B |
One joint set |
2 |
C |
One joint set plus random joints |
3 |
D |
Two joint sets |
4 |
E |
Two joint sets plus random joints |
6 |
F |
Three joint sets |
9 |
G |
Three joint sets plus random joints |
12 |
H |
Four or more joint sets, random, heavly jointed, "sugar cube", etc. |
15 |
J |
Crushed rock, earthlike |
20 |
Note: |
i ) For intersections, use(3.0¡ÑJn) ii) For portals, (use2.0¡ÑJn) |
¡@ |
¡@ |
3.Joint Roughness Number
|
Jr |
a)Rock-wall contact, and b) rock-wall contact before 10 cm shear |
A |
Discontinuous joints |
4 |
B |
Rough or irregular, undulating |
3 |
C |
Smooth, undulating |
2 |
D |
Slickensided, undulating |
1.5 |
E |
Rough or irregular, planar |
1.5 |
F |
Smooth, planar |
1.0 |
G |
Slickensided, planar |
0.5 |
Notel: |
i ) Descnptions refer to small scale features and intermediate scale features, in that order. |
¡@ |
c)No rock-wall contact when sheared |
H |
Zoon containing clay minerals thick enough to prevent rock-wall contact |
10 |
J |
Sandy,gravelly or crushed zone thick enough to prevent rock-wall contact |
10 |
Note: |
i ) Add 1.0 if the mean spacing of the relevant joint set is greater than 3m ii) Jr = 0.5 can be used for planar slickensided joints having lineation, provided the lineations are oriented for minmum strength. |
¡@ |
¡@ |
4.Joint Alteration Number
| ¡ír approx. |
Ja |
a)Rock-wall contact (no mineral fillings, only coatings) |
¡@ |
A |
Tightly healed, hard, non-softening, impermeable filling, i.e., quartx or epidote |
¡@ |
0.75 |
B |
Unaltered joint walls, surface staining only |
25-35¢X |
1.0 |
C |
Slightly altered joint walls. Non-softening mineral coatings, sandy particles, clay-free disintegrated rock, etc. |
25-30¢X |
2.0 |
D |
Silty-or sandy-clay coatings, small clay fraction (non-softening) |
20-25¢X |
3.0 |
E |
Softening or low fnction clay mineral coatings, i.e., kaolinite or mica. Also chlorite, talc, gypsum, graphite, etc., and small quantities of swelling clays. |
8-16¢X |
4.0 |
b)Rock-wall contact before 10 cm shear (thin mineral fillings) |
¡@ |
F |
Sandy particles, clay-free disintegrate drock, etc. |
25-30¢X |
4.0 |
G |
Strongly over-consolldated non-softening clay mineral fillings (continuous, but<5mm thickness) |
16-24¢X |
6.0 |
H |
Medium or low over-consolidation, softening, clsy mineral fillings(continuous, but<5mm thickness) |
12-16¢X |
8.0 |
J |
Swelling-clay fillings, i.e., montmorillonite (continuous,but<5mm thickness).Value of Ja depends on percent of swelling clay-size particles, and access to water, etc. |
6-12¢X |
8-12 |
c)No rock-wall contact when sheared(thick minaral fillings) |
¡@ |
KLM |
Zones or bands of disintegrated or crushed rock and clay (see G, H, j for description of clay condition) |
6-24¢X |
6, 8, or 8-12 |
N |
Zones or bands of silty-or sandy-clay, small clay fraction(non-softening) |
- |
5.0 |
OPR |
Thick, continuous zones or bands of clay (see G, H, J for description of clay condition) |
6-24¢X |
10, 13, or 13-20 |
|
5.Joint Water Reduction Factor |
Jw |
A |
Dry excavations or minor inflow, i.e.,<5mm 1/min locally |
10 |
B |
Medium inflow or pressure, occasional outwash of joint fillings |
0.66 |
C |
Large inflow or high pressure, in competent rock with unfilled joints |
0.5 |
D |
Large inflow or high pressure, considerable outwash or joint fillings |
0.33 |
E |
Exceptionally high inflow or water pressure at blasting, decaying with time |
0.2¡D0.1 |
F |
Exceptionally high inflow or water pressure continuing without noticeable decay |
0.1¡D0.05 |
Note: |
i ) Factors C to F are crude estimates. Increase Jw if drainage measures are installed. ii) Special problems caused by ice formation are not considered |
¡@ |
¡@ |
6.Stress Reduction Factor |
SRF |
a)Weakness zones in intersecting excavation, which may cause lossening of rock mass when tunnel excavated |
A |
Multiple occurrences of weakness zones containing clay or chemically disintegrated rock, very loose surrounding rock (any depth) |
10 |
B |
Single weakness zones containing clay or chemically disintegrated rock (depth of excavation¡Ø50m) |
5 |
C |
Single weakness zones containing clay or chemically disintegrated rock (depth of excavation>50m) |
2.5 |
D |
Multiple shear zones in competent rock (clay-free), loose surrounding rock (any depth) |
7.5 |
E |
Single shear zones in competent rock (clay-free) (depth of excavation¡Ø50m) |
5.0 |
F |
Single shear zones in competent rock (clay-free) (depth of excavation>50m) |
2.5 |
G |
Loose, open joints, heavily jointed or "sugar cube" .etc (any depth) |
5.0 |
Note: |
i ) Reduce these values of SRF by 25.50% if the relevant shear zones only influence but do not intersect the excavation |
b)Competent rock, rock stress problems |
£m3 /£m1 |
£m£c /£mc |
SRF |
H |
Low stress, near surface. Open joints |
200 |
<0.01 |
25 |
J |
Medium stress, favourable stress condition |
200¡D10 |
0.01¡D0.3 |
1 |
K |
High stress, vary tight structure Usually favourable to stability, may be unfavourable for wall stability |
10¡D5 |
0.3¡D0.4 |
0.5¡D2 |
L |
Moderate slabbing after 1 hour in massive rock |
5¡D3 |
0.5¡D0.65 |
5¡D50 |
M |
Slabbing and rock burst after a few minutes in massive rock |
3¡D2 |
0.65¡D1 |
50¡D200 |
N |
Heavy rock burst (strain burst) and immediate dynamic deformations in massive rock |
<2 |
>1 |
200¡D400 |
Note: |
ii ) For strongly anisotropic virgin stress field (if measured) when 5¡Ø£m1 /£m3¡Ø10. Reduce £mc to 0.75£mc when£m1 /£m3 >10. Reduce £mc to 0.5£mc' where £mc = unconfined compression strength, £m1 and £m3 are the major and minor pnncipal stresses, and £mc = maximum tangential stress (estimated from elastic theory)
iii ) Few case records available where depth of crown below surface is less than span width. Suggest SRF increase from 2.5 to 5 for such cases(see H). |
C)Squeezing rock :plastic flow of incompetent rock under the influence of high rock pressure |
£m£c /£mc |
SRF |
O |
Mild squeezing rock pressure |
1.5 |
5-10 |
P |
Heavy squeezing rock pressure |
>5 |
10-20 |
Note: |
iv ) Cases of squeezing rock may occur for depth H > 350Q1/3(Singh et al., 1992). Rock mass compression strength can be estimated from q = 0.7 £^ Q | 1/3 (Mpa) where r = rock density in kN/m3(Singh,1993)
d)Swelling rock: chemical swelling depending on presence of water |
R |
Mild swelling rock pressure |
5-10 |
S |
Heavy swelling rock pressure |
10-15 |
Note: |
Jr and Ja classification is applied to the joint set or discontinuity that is least favourable for stability both from the point of view orientation and shear resistance, T ( where T =£mn tan-1(Jr / Ja) Choose the most likely feature to allow failure to initiate |
¡@ |
Q = |
RQD |
¡Ñ |
Jr |
¡Ñ |
Jw |
¡@ |
Jn |
Ja |
SRF |
¡@ |
|
 ¹Ï¤G Q¨t²Î°Ñ¼Æ²Îp¹Ï |
|
¥|¡B¸gÅç¤ä¼µ³]p
¹Ï(¤@)¤¤¥ªÃä²Ä¤GӹϦC¥X¥Ã¤[©Ê¤ä¼µ¥Nªí©Ê¤èªk¡A¤ä¼µ«ØÄ³¬O®Ú¾Ú1250ӮרҡC¸gÅç¤ä¼µ³]p§Þ¥©¦p¹Ï(¤T)©Ò¥Ü¡C¹ï¤½¸ô©MÅK¸ôÀG¹D¡]¦a¤U¤ô¤Oµo¹q¼t¡^ESR = 0.9 ¡V 1.1¡A¿é¤ôÀG¹DESR = 1.6 ¡V 2.0¡AESR¦]¯À×¥¿¤ä¼µµ{«×¡A¤]¦]¦¹×¥¿¦¨¥»¤Î¦w¥þ¤ô·Ç¡C
¨Ì¾ÚNMTì²z¡A©¥Åé¤ÀÃþ¥Dn¥Î¨Ó¤ä¼µÃþ§O¿ï¾Ü¦Ó«DºÊ´ú¡AµM¦Ó´NÀG¹Dªº¦æ¬°¤Î©¥Åé«~½è¡AºÊ´ú¸ê®Æ¥i´£¨Ñ¦³¥Îªº§PÂ_¡ABarton et al(1994)«ØÄ³ÀG¹D¾À±Åܦì¡G
(mm)¡×SPAN(m)¡Ñ£mc)1/2 ¡ÑQ
°²³]SPAN¡×10m¡AQ¡×0.01¡AH¡×100m¡A£mc¡×10MPa¡A¡µ¡×316mm¡C
¤¡B©¥®ê³]p
¦P¤@½ü¶iªº©¥®ê¨äªø«×¨Ì¹ê»Úª¬ªp¦ÓÅÜ¡A¼ÆÈ¤ÀªR¥i¥Î¨Ó½T»{©¥®ê©Ò»Ýªºªø«×¡A³Ì¨Îªº©¥®ê³]p¬O¦Ò¼{©¥®ê©Ó¨ü³Ì¤j²ü«ªº¦a¤è¡A¦P®É¦Ò¼{©¥®êªºÂ_±¤j¤p¡C¹ï©óÅܧΩʸû¤jªº¦a½L¡A®e³\¸û¤jÅܧΪºÀô®ñ¾ð¯×¬Á¼þÅÖºû©¥®ê¸û¬°¾A¦X¡C¤£¦P©Ó¸ü¤O¤Î«l«×ªº©¥®ê·|¼vÅT¼Q¾®¤g¤º³¡©Ò©Ó¨üªº¤O¡C
NMT±Ä¥ÎB+S(fr)(©¥®ê¡ÏÀ㦡¿ûÅÖ¼Q¾®¤g)§@¬°¥Ã¤[©Ê¤ä¼µ¡A¤£»ÝŨ¬ä²V¾®¤g¡A©Ò¥H¿ûÅ֤Ω¥®ê¶·¨ã¦³¨¾»G»k¥\¯à¡C©¥®ê¨ü¨¾»k³B²z¡BÂHµÛ¾¯¤ÎPVC®MºÞ«OÅ@¡A©Î±Ä¥Î¬Á¼þÅÖºû©¥®ê¡C
¤»¡B¿ûÅÖ¼Q¾®¤g
1974¦~ªºQ¨t²Î¤ä¼µ«ØÄ³¥u¦³¼Q¾®¤g©Î¥[çE¿û½uºôS(mr)¡A1984¦~À㦡¿ûÅÖ¼Q¾®¤gS(fr)º¦¸°Ó·~¤WÀ³¥Î©ó®¿«Âªº¤ô¤O¹q¼tpµe¡A¦]¦¹¤j¬ù¨ì1984¦~¥H«á¡AS(mr)¦b®¿«Â¤w¤£¦A¨Ï¥Î¡Aì¦]¬OS(fr)ªº¬I¼Q§Þ³N¦³À¸¼@©Êªº¦¨¥\¶i®i¡A
|
¨ä¤¤¥]¬A¾÷±ñÁu¼Q¼ß¾÷ªº°ª¼Q¶q(25m3/hr)¡B°ª«~½è¡B§C¤Ï¼u¶q¡C¹Ï(¤@)¤¤¥ªÃä²Ä¤TӹϺKn²{¥N¼Q¾®¤gªºÃöÁän¯À¡A¨ä¦b¦w¥þªº¡B¨³³tªº¤Î¸gÀÙªºÀG¹D¬I¤u¤è±¥NªíµÛ¤@ºØ²©R¡C
S(fr)ªºÃöÁä©Ê½è¥]¬A«Ü§Cªºº¯³z²v¡A¿ûÅÖ¨ü¨ì«OÅ@(¼Q¾®¤g«~½è¦n¡A§C§t¤ô¶q¡AW/(C+F)=0.4 ¡V 0.45)¡AS(fr)Åܧήɧl¦¬¯}µõªº¯à¶q¬°¯Â¼Q¾®¤gªº30¦Ü40¿¡A¥Bµ¥©ó¤G¼h¿û½uºô¼Q¾®¤g¡CS(fr)ªº¥t¤@ÀuÂI¬OS(fr)¥i¥H±K¶K©ó¤£¥¾ãªº©¥¾À±(¿û½uºô¬O¤£¥i¯à¡A·|§Î¦¨¤Õ¬}¡A¼W¥[»G»kªº¼ç¦b©Ê)¡CS(fr)¥i¥H©M©Ò¦³©¥¾À±K¦X¡A¥iµo´§³Ì°ªªº¥i¯àªºÂHµÛ¤O¡B¾®»E¤O¤Î¿iÀ¿¤O¡C
¹Ï¤T Q¨t²ÎÀG¹D¸É±j§÷®Æ³]p¹Ï(Grimstad Barton, 1993)
¤C¡B¾_´ú±À¦ô©¥¥Û«~½è
¹ï©ó¥¼¨ÓªºÀG¹Dpµe¡A§Q¥Î¾_´ú¨Ó½Õ¬d¦a¼hªº§C³t±a©Ò¦b¦ì¸m³Ì¬°«K§Q¡A¦ý¨ä¥Dn°ÝÃD¬O¦p¦ó§Q¥Î¾_´ú¸ê®Æ¨Ó±À¦ô©¥Åé«~½è¡C²L¼hµw©¥©¥½Lªº¾_ªi§é®gªk(²`«×µ¥©ó©Î¤p©ó25m)¡ABarton et al(1992)«ØÄ³¡G
Vp¡×log10Qc¡×3.5 km/s (1)
Vp¡×¬OPªi³t«×
Qc¡×Q¡Ñ£mc/100
¹Ï(¥|)»¡©úQc»PVp¡B²`«×¡B©¥Åé²Õºc¤Õ»Ø¡B³æ¶b§ÜÀ£¤Î©¥ÅéÅܧμҼƪºÃö«Y¡A©¥¥Û¤Õ»Ø²vn¶V¤j¡AVp¶V¤p¡A²`«×¶V¤j¡AVp¶V¤j¡A¦a¼h²`«×µ¥©ó©Î¤p©ó25m®É¡A§Q¥Î(1)¦¡¶·¦Ò¼{nȧ@×¥¿¡A¦a¼h²`«×µ¥¤j©ó25m®É¡AVp¥ç¶·×¥¿¡C¹ï¸û¤j²`«×¦a¼h¡A¦pªG¥i¯à¡A¥i±Ä¥Î¤Õ¤º¾_´ú¡A¥Ñ©ó²`«×¸û¤j¡A¸`²z¸û¬°ºò³¬¡A©¥½L¾Ú¦³¸û°ªªº¼u©Êªi³t¤ÎÅܧμҼơA¦ý¥i¯àµLªk´£°ªÀG¹DÀG¹D«~½è¡]QÈ¡^¡A¦]¬°°ªÀ³¤O²£¥ÍÀ½À£¡BÀ£¸H©ÎªOµõ(slabbing)¡A©è®ø¦]¸`²z¸û¬°ºò³¬¨Ï©¥½L¨ã¦³¸û°ªªº¼u©Êªi³t¤Î¼Ò¼Æ¡A©Ò¥HÀ³¥ÎQc-VpÃö«Yn¤p¤ß¡C°²³]QÈ=2¡A£mc=50MPa¡AQc =2¡Ñ50/100=1¡A°²³]n = 10¢M¡AÀG¹D²`«×¬O100¤½¤Ø¡An´î¤ÖVp¡AÀG¹D²`«×¼W¥[Vp¡A¨âªÌ®Ä¥Î´Xªñ¬Û©è®ø¡A©Ò¥H±Ä¥Î(1)¦¡¹w¦ô²{¦aVp=3.5km/s¤ÎÅܧμҼÆM=10GPa¡CM = 10QC1/3 GPa¡C
¤K¡B¼ÆÈ¤ÀªR½T»{
Q¨t²Î©Ò«ØÄ³ªºÀG¹D¤ä¼µ¨t²Î¡A¥]¬A©¥®ê¶¡¶Z¡B¿ûÅÖ¼Q¾®¤g«p«×¡B¿û¦Ø¥[«l¼Q¾®¤g(RRS)©Î³õű²V¾®¤g«ý(CCA)(©¥½L®tªÌ)¡A¬O®Ú¾Ú¸gÅçÃö«Y¡C¦b¨M©w¤ä¼µ¨t²Î®É¡A¤´µM»Ýn¦Ò¼{©¥®êªº©Ó¸ü¤O¤Î«l«×¡AÀˮּQ¾®¤g©Ò©Ó¨üªº²ü«¡C¦]¦¹NMT³]p¥ç±Ä¥Î¼ÆÈ¤ÀªR¨ÓÀ°§U¤F¸Ñ¤ä¼µ¼ç¦bªº²§±`©Ó¨ü²ü«¡A§ï¶i°ò¥»ªº¸gÅ窺³]p¡C¦p¹Ï(¤)©Ò¥Ü¡A¹ï©óQ¡Õ0.1¡A¥i±Ä¥Î¯}¸H¦a½L¬°³sÄòÅé¼Ò¦¡¡A¹ï©ó0.1¡ÕQ¡Õ100¡A¸`²z¥i±Ä¥Î¤G¦V«×UDEC©Î¤T¦V«×3DEC¨Ó¼ÒÀÀ¡CFlacµ{¦¡(³sÄòÅé¼Ò¦¡)µLªk¹ê»Ú´yzÂ÷´²¸`²z©¥½LªºÅܧΦ欰¡C
¹Ï¥| ¾_ªi³t«×»P©¥¥Û«~½è¡BÀR®õÅܧμҼÆÃö¹Ï(Barton, 1995)
 ¹Ï¤ QÈ»P¼ÆÈ¤ÀªR¼Ò¦¡Ãö«Y¹Ï(×¥¿¦ÛHoek, 1983) |
|
¤E¡B¿ûÅÖ¼Q¾®¤g¼ÆÈ¤ÀªR¼Ò¦¡
·í·sÂA©¥¾À¨ã¦³°ª«×²ÊÁW«×®É¡A¾A·í¿ï¾Ü¿ûÅÖ¼Q¾®¤gÂHµÛ¤O¡A±Nµo²{¼Q¾®¤g»P©¥¾À¶¡·|¦³¼ç¦b«Ü°ªªº¿iÀ¿±j«×¡A¹Ï(¤»)¥i¥Î¨Ó¦ôºâS(fr)»P©¥¾À¶¡ªº±j«×¡C
¤Q¡B©¥®ê¨¾»G»k«OÅ@
B+ S(fr)§@¬°ÀG¹D¥Ã¤[¤ä¼µµ¹¤©³]pªÌ«Ü¤jªºt¾á(50¦~©Î100¦~ªºÀG¹D³]p¦~)¡A®¿«Â±Ä¥ÎCT(Combi-Tube)¸Ñ¨M¤F¦¹°ÝÃD¡A¦p¹Ï(¤C)©Ò¥Ü¡CPVC®MºÞ±NÄé¼ß²G¤À¬°¨â¼h¡A©¥®ê±ì¥ó¸gÁá¾N³B²z¡A¨Ã¶î¤WÀô®ñ¾ð¯×¡A¾÷±ñ¦¡ÁãºÝ¬°Á{®ÉÁã©w¡C©¥®ê¥i¦b¼Q¾®¤g«e©Î«áÄ麡¼ß²G¡C¼Q¾®¤g«á©¥®êÄé¼ß»Ý¹w¯dÄé¼ßºÞ¡C¦b©¥½L¨ã¦³§CÅܧμҼƤΩ¥®ê«l«×¸û¤j»P©¥½LÅܧεLªk¨ó½Õ®É¡A±Ä¥Î¬Á¼þÅÖºû©¥®êÄé¸mÀô®ñ¾ð¯×©Î¦X¦¨¾ð¯×¥ç¥i¸Ñ¨M»G»k°ÝÃD¡C
¤Q¤@¡B°®ÀꪺNMTÀG¹D
¹Ï(¤K)»¡©úNMT¨S¦³¿û¦Ø¤Î¦³¿û¦Øªº¤ä¼µ«¬¦¡¡CNMT¹jÂ÷¤ô¤ÎÁ÷á¦p¹Ï(¤E)©Ò¥Ü¡A¦³¥|Ó«ÂI»Ýn±j½Õ±o¡G
(1)ÀG¹Dn±Æ¤ô¦ýnºû«ù°®Àê(¹w¥ýÄé¼ß¤î¤ô)¡C
(2)¸`¬Ù¤j¶q²V¾®¤g¼Æ¶q¡C
(3)»Ýn¥i¾aNMT©¥½L¥[«l(¦]¬°¬O¥Ã¤[ªºÀG¹D¤ä¼µ)¡C
(4)»Ýn§CªººûÅ@¡C¡½
|
MDEC-S(fr)¤§S(fr)¿é¤J¸ê®Æ |
 |
1)·í£_c(©¥¥Û)¡Ö£_c(¼Q¾®¤g)¡AJCSs£X¤Îrs¬O³Ì®zªº³sµ² 2)·í£_c(©¥¥Û)¡Õ£_c(¼Q¾®¤g)¡AJCSs¤Î£Xrr¬O³Ì®zªº³sµ² |
 |
1)´¤ùØ¥¢±Ñ«eªº°Å¤O±j«× 2)´¤ùØ¥¢±Ñ«áªº°Å¤O±j«×  |
 |
¢» §@¥Î¦b¼Q¾®¤gªº¥¿¤è¦VÀ³¤O ¡E¨å«¬¥§¡¤ä¼µÀ£¤OP ©¥®ê10t/m2=0.1 Mpa ¡E°²³]¥§¡¤ä¼µÀ£¤OP ¼Q¾®¤g=0.01¡ã0.1Mpa |
¥Ñ©ó«D±`§Cªº¥¿¦VÀ³¤O¡A£X1¤Î£X2«Ü°ª¡A¬J¤j©ó50¢X¦]¦¹JCOH¡ÖJTENS |
°²³] £me/£m1for S(fr)¡×10/1 |
°²³]JTENS(Mpa)¡×(®t) 0.25¡ö¡÷1.0(¦n) |
¹Ï¤» ¦ôºâ©¥¾À-S(fr)¶¡ªº±j«×ªº¤èªk

¹Ï¤C ®¿«ÂCT©¥®ê¥Ü·N¹Ï
¹Ï¤K ¤ä¼µ¨t²ÎÁa¦V¤Î¾î¦V¥Ü·N¹Ï
¹Ï¤E NMTÀG¹DŨ¬ä¨ã¦³±Æ¤ô³]¬I¡A¦ý¨®¹D¬O°®Àꪺ(Kveldsvik¤ÎKarlsrud, 1995)
°Ñ¦Ò¤åÄm¡G
1. Nick Barton & Panayiotis Chryssanthakis(1996) "Design of Tunnels for NMT Using Fibre Reinforced Shotcrete and Bolting as Permanent Support", Second International Symposium on Sprayed Concrete.
|